

THE STANDARD FIREWORKS RAJARATNAM COLLEGE FOR WOMEN (AUTONOMOUS), SIVAKASI – 626 123.

(Affiliated to Madurai Kamaraj University, Re-accredited with A Grade by NAAC, College with Potential for Excellence by UGC and Mentor Institution under UGC PARAMARSH) DEPARTMENT OF PHYSICS

UG DEGREE PROGRAMME IN PHYSICS

COURSE OUTCOME

PROGRAMME EDUCATIONAL OBJECTIVES		
The Graduates	s will	
PEO1.	take up careers as educationalist, researcher, technical specialist and pursue higher studies in related fields including teaching and management	
PEO2.	explore physical systems through theoretical models, experiments and communicate findings of the scientific work	
PEO3.	become self employed in technical fields and consultancy services	
PEO4.	possess moral responsibility to be self-disciplined, socially concerned and environment friendly individuals	

PROGRAMME SPECIFIC OUTCOMES		
By the Comple	etion of UG. Physics programme, the learners will be able to	
PSO1.	elucidate and demonstrate the fundamental principles and concepts of physics which include optics, mechanism, electricity, electromagnetism, thermodynamics, digital electronics, wave mechanics etc.	
PSO2.	collect, analyze data critically and interpret the results to achieve valid conclusions	
PSO3.	explore systematically the physical phenomenon by solving problems and performing projects and justify their report scientifically	
PSO4.	communicate physics concepts, processes and results both in verbal and written form effectively using ICT tools	
PSO5.	plan with team members, execute experiments, investigate the experimental results and prepare the documentation for the findings	
PSO6.	project the true results of scientific findings and conscientious attempt to describe the physical phenomena accurately, without bias and any hyperbole	
PSO7.	adapt to changes in technology by means of self-directed and lifelong learning in various fields like biopolymers, thinfilms, crystal growth, nanotechnology, fuel cell etc.	

	Major Course		
COURSE	COURSE CODE: GLPH11 COURSE TITLE: Mechanics and Properties of Matter		
On successful completion of the course, the learners should be able to			
CO1	state Newton's laws, Kepler's laws, A equation, Poisson's ratio and properti	Archimedes' principle, Bernoulli's es of simple harmonic motion.	
CO2	explain the concepts of dynamics, ose mechanics and elastic nature of matte	cillations, central force, fluid er.	
CO3	use the concepts of dynamics, fluid n relevant phenomenon	nechanics, gravitation and oscillation to explain	
CO4	analyze the concepts behind conserva harmonic motion, gravitational field,	tion of angular momentum, simple fluid mechanism and elastic constants.	
CO5	apply the laws of mechanics and prop	perties of matter to solve problems.	

Major Course		
COURSE CODE: GLPH12	COURSE TITLE: PHYSICS APPLICATIONS IN EVERYDAY LIFE	

On successful completion of the course, the learners should be able to

 \checkmark

CO1	recall the basics of electricity, fibre optics, lasers, geographic information system and solar energy.
CO2	explain the concepts of electricity, fibre optics, geographic information system, laser and solar energy.
CO3	differentiate the single phase supply with three phase supply, types of optical fibers and types of lasers.
CO4	analyze the applications of lasers, fiber optics and solar energy.
CO5	solve problems in the field of electricity, fibre optics and solar energy.

	ALLIE	D COURSE - I	
COURS	E CODE: GLPH1A	COURSE TITLE: FUNDAMENTAL PHYSICS	
On succe	ssful completion of the course, the le	earners should be able to	
CO1	recall basics of photo electricity, transport properties of gases, laws and parameters involved in electricity, rotational motion and gravitational laws		
CO2	explain photo electric cells, Boy's experiment, laws related to electricity and gravitation		
CO3	derive the expressions for transport properties of gases, time period, electric field for different charge distributions and parameters of rotational motion		
CO4	analyze photoelectricity with respect to various parameters, 'g' using compound pendulum and compare the variation of 'g' with respect to latitude, depth and altitude		
CO5	solve simple problems related to photo electricity, kinetic theory of gases, rotational motion, electricity and gravitation		
	Majo	or Course	

 \checkmark

CO1	define aberrations, dispersion, diffraction and their types
CO2	describe and compare various optical phenomena, optical theories and optical devices
CO3	solve problems in optics by selecting appropriate equations
CO4	explain conditions and ideas to produce desired images through optical devices
CO5	analyse various parameters involved in aberrations, dispersion and diffraction

	Major Course		
COURSE CODE: GLPH2L COURSE TITLE: LAB-I			
On successful completion of the course, the learners should be able to			
CO1	recall the measurements of physical	parameters, thermal and optical properties	
CO2	describe the physical concepts under	lying the experiments	
CO3	perform experiments applying therm	al and optical properties	
CO4	collect and analyse the data mathem	natically and graphically	
CO5	do experiments with laboratory ethic	25	

Allied course-II

COURSE CODE: GLPH2A2

COURSE TITLE: SOLID STATE PHYSICS & DIGITAL ELECTRONICS (FOR CHEMISTRY)

On successful completion of the course, the learners should be able to

CO1	recall the concepts of crystal structures, X-ray diffraction, semiconductors and logic gates.
CO2	explain different crystal structures, xrd methods, types of semiconductors and logic gates.
CO3	apply different methods to simplify the equations using combinational logic circuits
CO4	analyze crystal structures, semiconductors and digital logic theorems
CO5	determine lattice parameters, prove digital logic laws and truth tables of logic gates.

MAJOR COURSE		
COURSE CODE: GLPH4L COURSE TITLE: LAB – II		
On successful completion of the course, the learners should be able to		
CO1	recall the principles of the experime	ent
CO2	construct the electrical and electron	ic circuits, write C++ programme
CO3	perform the experiments and record	data
CO4	analyze the data and draw conclusion	ons mathematically and graphically
CO5	communicate the results of the expe	riments in an ethical manner

~

	Allied		
COURSE CODE: GLPH2A1	COURSE ELECTRONICS	TITLE:	DIGITAL

On successful completion of the course, the learners should be able to

CO1	explain the basic principles in digital systems.
CO2	interpret the functioning of gates, combinational logic circuits, number systems and flip flops.
CO3	identify logic gates, convert number system and codes
CO4	apply digital logic principles to solve simple circuits.
CO5	construct circuits for various arithmetic operations.

Allied course -II			
COURSE CODE: GLPH2A2		COURSE TITLE: SOLID STATE PHYSICS & DIGITAL ELECTRONICS (FOR CHEMISTRY)	
On successful completion of the course, the learners should be able to			
CO1	recall the concepts of crystal structures, X-ray diffraction, semiconductors and logic gates.		
CO2	CO2 explain different crystal structures, xrd methods, types of semiconductors and logi gates.		
CO3	CO3 apply different methods to simplify the equations using combinational logic circuits		
CO4	analyze crystal structures, semiconductors and digital logic theorems		
CO5	CO5 determine lattice parameters, prove digital logic laws and truth tables of logic gates.		

MAJOR COURSE

COURSE CODE: GLPH2AL

COURSE TITLE: ALLIED LAB

On successful completion of the course, the learners should be able to

CO1	recall the principle of the experiment
CO2	construct electronic and electrical circuits
CO3	perform the experiments and record data
CO4	analyse the physical parameters both manually and graphically
CO5	perform the experiments with confidence following the laboratory ethics

MAJOR COURSE			
COURSE CODE: GLPH31 COURSE TITLE: Electricity			
On successful completion of the course, the learners should be able to			
CO1state Gauss law and define electric potential, capacitance, electromotive force, direct and alternating current.			
CO2	explain flux of an electric field, electric potential due to charges, electrical parameters, DC circuit, AC circuit and working of transformer.		
CO3	solve problems related to electric fiel and power in AC circuits.	d, potential, capacitance, electromotive force	
CO4	analyze various electrical parameters, capacitor with a dielectric, AC and DC circuits.		
CO5	apply Gauss law to find the electric f Kirchhoff's voltage law and current l difference in circuits.	ield in various charge distribution, aw to examine the current and potential	

MAJOR COURSE		
COURSE CODE: GLPH32	COURSE TITLE: ELECTROMAGNETISM	

On successful completion of the course, the learners should be able to

CO1	recall magnetic phenomena/laws, magnetic materials/properties, electromagnetic oscillations/circuits, electromagnetic waves/basic equations and polarization
CO2	describe the determination of magnetic phenomena/currents/laws, inductance, magnetic materials/properties, electromagnetic oscillations/circuits, electromagnetic waves/basic equations and polarization phenomena
CO3	Apply magnetic phenomena/currents/laws, inductance, magnetic materials/properties electromagnetic oscillations/circuits, electromagnetic waves/basic equations and polarization phenomena to solve problems
CO4	Analyse magnetic phenomena/currents/laws, inductance, magnetic materials/properties, electromagnetic oscillations/circuits/waves/basic equations and polarization phenomena
CO5	criticize the magnetic phenomena/currents/laws, inductance, magnetic materials/properties, electromagnetic oscillations/circuits/waves/basic equations and polarization phenomena

COURS	E CODE: GLPH3N	COURSE TITLE: PHYSICS FOR THE NEW WORLD
On succe	essful completion of the course,	the learners should be able to
CO1	1 list the characteristics of lasers, ultrasonics and the basics of electrical safety and satellite communications	
CO2	describe the ultrasonic scanning methods, earthing for safety, global positioning system	
CO3	compare the ordinary light w and the types of satellites	vith laser, single phase with three phase power supply
CO4	explain the sonograms, light GPS receiver	ning arrestor for buildings, treatment of electric shock
CO5	discuss the applications of la	sers, ultrasonics, satellites
COURS On succe	MA E CODE: GLPH41 essful completion of the course,	AJOR COURSE COURSE TITLE: Analog Electronics the learners should be able to
COURS On succe	MA E CODE: GLPH41 essful completion of the course, define transistor parameters.	AJOR COURSE COURSE TITLE: Analog Electronics the learners should be able to transistor classifications, various types of transistor
COURS On succe CO1	MA E CODE: GLPH41 essful completion of the course, define transistor parameters, biasing, feedback concepts, s	AJOR COURSE COURSE TITLE: Analog Electronics the learners should be able to transistor classifications, various types of transistor witching action of transistor & diodes and op-amps.
COURS On succe CO1 CO2	MA E CODE: GLPH41 essful completion of the course, define transistor parameters, biasing, feedback concepts, s explain various transistor bia transistor amplifiers, differen	AJOR COURSE COURSE TITLE: Analog Electronics the learners should be able to transistor classifications, various types of transistor witching action of transistor & diodes and op-amps. sing methods, working of single stage, multistage t types of oscillators, multivibrators and op-amps
COURS On succe CO1 CO2	MA E CODE: GLPH41 essful completion of the course, define transistor parameters, biasing, feedback concepts, s explain various transistor bia transistor amplifiers, different	AJOR COURSE COURSE TITLE: Analog Electronics the learners should be able to transistor classifications, various types of transistor witching action of transistor & diodes and op-amps. sing methods, working of single stage, multistage t types of oscillators, multivibrators and op-amps.
COURS On succe CO1 CO2 CO3	MA E CODE: GLPH41 essful completion of the course, define transistor parameters, biasing, feedback concepts, s explain various transistor bia transistor amplifiers, differen analyze different types of con circuits and oscillators.	AJOR COURSE COURSE TITLE: Analog Electronics the learners should be able to transistor classifications, various types of transistor witching action of transistor & diodes and op-amps. sing methods, working of single stage, multistage t types of oscillators, multivibrators and op-amps. Ipling in transistor amplifier, significance of feedback
COURS On succe CO1 CO2 CO3	MA E CODE: GLPH41 essful completion of the course, define transistor parameters, biasing, feedback concepts, s explain various transistor bia transistor amplifiers, differen analyze different types of con circuits and oscillators. construct electronic circuits u	AJOR COURSE COURSE TITLE: Analog Electronics the learners should be able to transistor classifications, various types of transistor witching action of transistor & diodes and op-amps. sing methods, working of single stage, multistage t types of oscillators, multivibrators and op-amps. upling in transistor amplifier, significance of feedback using diodes, transistors and op-amps for various
COURS On succe CO1 CO2 CO3 CO4	MA E CODE: GLPH41 essful completion of the course, define transistor parameters, biasing, feedback concepts, s explain various transistor bia transistor amplifiers, differen analyze different types of con circuits and oscillators. construct electronic circuits u applications.	AJOR COURSE COURSE TITLE: Analog Electronics the learners should be able to transistor classifications, various types of transistor witching action of transistor & diodes and op-amps. sing methods, working of single stage, multistage t types of oscillators, multivibrators and op-amps. ipling in transistor amplifier, significance of feedback ising diodes, transistors and op-amps for various

COURSE	CODE: GLPH41	COURSE TITLE: Analog Electronics	
On successful completion of the course, the learners should be able to			
CO1	define transistor parameters, transist biasing, feedback concepts, switchir	or classifications, various types of transistor ng action of transistor &diodes and op-amps.	
CO2	explain various transistor biasing methods, working of single stage, multistage transistor amplifiers, different types of oscillators, multivibrators and op-amps.		
CO3	analyze different types of coupling i circuits and oscillators.	in transistor amplifier, significance of feedback	
CO4	construct electronic circuits using diodes, transistors and op-amps for various applications.		
CO5	evaluate the necessary parameters f by applying appropriate conditions.	or the proper functioning of electronic circuits	

MAJOR COURSE		
COURSE CODE: GLPH4L COURSE TITLE: LAB II		
On successful completion of the course, the learners should be able to		
CO1	recall the principles of the experiment	
CO2	construct the electrical and electronic circuits, write C++ programme	
CO3	CO3 perform the experiments and record data	
CO4	analyze the data and draw conclusions mathematically and graphically	
CO5	communicate the results of the exper	iments in an ethical manner

NON-MAJOR ELECTIVE COURSE

COURSE CODE: GLPH4N

COURSE TITLE: SOLAR ENERGY AND ITS APPLICATIONS

On successful completion of the course, the learners should be able to

CO1	list the types of energy sources and solar energy devices
CO2	explain solar radiation, principle and working of solar based water heating/cooking/air heating/desalination and photovoltaics system
CO3	construct solar water heater, solar cooker, solar air heater, solar stills and solar cells
CO4	analyse solar energy, its applications, merits and demerits
CO5	apply the principle of solar energy to solve problems

DISCIPLINE SPECIFIC COURSE			
COURSE CODE: GLPH4DSL COURSE TITLE: LAB - SCIENTIFIC SKILL DEVELOPMENT			
On successful completion of the course, the learners should be able to			
CO1	report life history of scientists and their inventions		
CO2	analyze a scientific journal		
CO3	CO3 solve problems in Physics		
CO4	troubleshoot the electrical and electronic circuits		
CO5	acquire the presentation skills in confe	rences	

 \sim

Major Course		
COURSE CODE: GLPH51 COURSE TITLE: CLASSICAL MECHANICS		
On successful completion of the course, the learners should be able to		
CO1	recall the basic concepts in Classical Mechanics	
CO2	describe conservation laws, generalised coordinates, Lagrangian, Hamiltonian formulations, motion under central force and special theory of relativity	
CO3	CO3 apply generalised coordinates, Lagrangian and Hamiltonian formulations, Kepler's laws, relativistic generalizations to solve problems	
CO4	investigate Kepler's problem, two body problem, special theory of relativity and Lorentz transformations	
CO5	explore the shape of the orbits or path of a moving particle	

ELECTIVE COURSE			
COURSE	CODE: GLPH5E1	COURSE TITLE: DIGITAL ELECTRONICS	
On success	On successful completion of the course, the learners should be able to		
CO1	state basic principles of number systems, codes and digital systems		
CO2	explain the working of digital circuits for arithmetic/logical operations, memory, counters and converters		
CO3	apply digital principles to solve problems and design circuits		
CO4	use gates and flip flop	s for the construction of different kinds of digital circuits	
CO5	analyze various types	of gates, flip flops, registers, counters, D/A and A/D converters	

ELECTIVE COURSE

COURSE CODE: GLPH5E2

COURSE TITLE: ATOMIC AND NUCLEAR PHYSICS

On successful completion of the course, the learners should be able to

CO1	evoke various nuclear models, periodic table, the nuclear reaction and nuclear forces
CO2	comprehend the atomic spectra, coupling of electrons, atomic nucleus, particle detectors and nuclear decay
CO3	solve the problems in atomic and nuclear physics
CO4	Analyze various atomic and nuclear structures/models/spectra, types of coupling, radioactive decay and devices like detectors and accelerator
CO5	explain the important phenomena in atomic nucleus

ELECTIVE COURSE			
COURSE CODE: GLPH5E3 COURSE TITLE: FIBRE OPTICS			
On successful completion of the course, the learners should be able to			
CO1	list the basic concepts and importance of fibre optics		
CO2	explain the requirements of fibre optic techniques		
CO3	classify the fabrication techniques and differentiate the functions of wave guides		
CO4	elucidate the required light sources for dispersion in optical fibres		
CO5	discuss about the transmission throu	gh optical fibres	

**~

 \checkmark

ELECTIVE COURSE			
COURSE CODE: GLPH5E4 COURSE TITLE: ENERGY PHYSICS			
On successful completion of the course, the learners should be able to			
CO1	list the basics of energy sources		
CO2	describe the applications of different energy sources		
CO3 distinguish solar photovoltaic and solar distillation processes			
CO4	analyse solar energy, wind energy and geothermal energy		
CO5	appraise the advantages and disadvantages of energy sources		

Major Course		
COURSE CODE: GLPH5L COURSE TITLE: LAB III		
On successful completion of the course, the learners should be able to		
CO1	explain the principles of the experiments	
CO2	construct and analyse electronic and non-electronic circuits	
CO3	determine the physical parameters through various experimental techniques	
CO4	analyse the data and draw conclusions manually and graphically	
CO5	do experiments with	laboratory ethics

	Major Course	
COURS	E CODE: GLPH5L COURSE TITLE: LAB III	
On succe	essful completion of the course, the learners should be able to	
CO1	explain the principles of the experiments	
CO2	construct and analyse electronic and non-electronic circuits	
CO3	determine the physical parameters through various experimental techniques	
	analyse the data and draw conclusions manually and graphically	
CO4	analyse the data and draw conclusions manually and graphically	
CO4 CO5	analyse the data and draw conclusions manually and graphically do experiments with laboratory ethics Major Course	
CO4 CO5	analyse the data and draw conclusions manually and graphically do experiments with laboratory ethics Major Course E CODE: GLPH61 COURSE TITLE: SOLID STATE PHYSICS	
CO4 CO5 COURS	analyse the data and draw conclusions manually and graphically do experiments with laboratory ethics Major Course E CODE: GLPH61 COURSE TITLE: SOLID STATE PHYSICS essful completion of the course, the learners should be able to	
CO4 CO5 COURS On succe	analyse the data and draw conclusions manually and graphically do experiments with laboratory ethics Major Course E CODE: GLPH61 COURSE TITLE: SOLID STATE PHYSICS essful completion of the course, the learners should be able to recall interatomic forces, unit cells, different types of bondings, semiconductors	
CO4 CO5 COURS On succe	analyse the data and draw conclusions manually and graphically do experiments with laboratory ethics Major Course E CODE: GLPH61 COURSE TITLE: SOLID STATE PHYSICS essful completion of the course, the learners should be able to recall interatomic forces, unit cells, different types of bondings, semiconductors and superconductors	
CO4 CO5 COURS On succe CO1 CO2	analyse the data and draw conclusions manually and graphically do experiments with laboratory ethics Major Course E CODE: GLPH61 COURSE TITLE: SOLID STATE PHYSICS essful completion of the course, the learners should be able to recall interatomic forces, unit cells, different types of bondings, semiconductors and superconductors and superconductors discuss about the different structures based on packing factor, current conduction generation and recombination of charge carriers	
CO4 CO5 COURS On succe CO1 CO2 CO3	analyse the data and draw conclusions manually and graphically do experiments with laboratory ethics Major Course E CODE: GLPH61 COURSE TITLE: SOLID STATE PHYSICS essful completion of the course, the learners should be able to recall interatomic forces, unit cells, different types of bondings, semiconductors and superconductors and superconductors discuss about the different structures based on packing factor, current conduction generation and recombination of charge carriers explain the crystal system, structures, properties of semiconductors and superconductors	
CO4 CO5 COURS On succe CO1 CO2 CO3 CO4	analyse the data and draw conclusions manually and graphically do experiments with laboratory ethics Major Course E CODE: GLPH61 COURSE TITLE: SOLID STATE PHYSICS essful completion of the course, the learners should be able to recall interatomic forces, unit cells, different types of bondings, semiconductors and superconductors and superconductors discuss about the different structures based on packing factor, current conduction generation and recombination of charge carriers explain the crystal system, structures, properties of semiconductors and supe conductors analyze various lattice and electrical parameters of different types of conductors.	

MAJOR COURSE			
COURSE CODE: GLPH62 COURSE TITLE: WAVE MECHANICS			
On successful completion of the course, the learners should be able to			
CO1	recall the fundamental concepts in wave mechanics		
CO2	outline different theories and formalism of wave mechanics		
CO3	solve the harmonic oscillator, rigid rotator, particle in a box, square potential barrie and alpha emission problems		
CO4	discuss the one dimensional and three dimensional energy eigenvalue problems		
CO5	analyze the energy eigenvalue problems such as square potential with rigid, finite walls, square potential barrier, rigid rotator and hydrogen atom		

		MAJOR COURSE
COURS	E CODE: GLPH62	COURSE TITLE: WAVE MECHANICS
On succe	ssful completion of the	course, the learners should be able to
CO1	recall the fundament	al concepts in wave mechanics
CO2	outline different the	ories and formalism of wave mechanics
CO3	solve the harmonic of and alpha emission p	oscillator, rigid rotator, particle in a box, square potential barrier
	discuss the one dimensional and three dimensional energy eigenvalue problems	
CO4	discuss the one dime	insional and three dimensional energy ergenvalue problems
CO4 CO5	analyze the energy walls, square potenti E CODE: GLPH6L	eigenvalue problems such as square potential with rigid, finite al barrier, rigid rotator and hydrogen atom Major Course COURSE TITLE: LAB IV
CO4 CO5 COURS	discuss the one dime analyze the energy walls, square potenti E CODE: GLPH6L ssful completion of the	eigenvalue problems such as square potential with rigid, finite al barrier, rigid rotator and hydrogen atom Major Course COURSE TITLE: LAB IV course, the learners should be able to
CO4 CO5 COURS On succe CO1	discuss the one dime analyze the energy walls, square potenti E CODE: GLPH6L ssful completion of the explain the principle	Major Course COURSE TITLE: LAB IV course, the learners should be able to s of the experiments
CO4 CO5 COURS On succe CO1 CO2	discuss the one dime analyze the energy walls, square potenti E CODE: GLPH6L ssful completion of the explain the principle construct and analyse	Associate and unce dimensional energy ergenvalue problems eigenvalue problems such as square potential with rigid, finite al barrier, rigid rotator and hydrogen atom Major Course COURSE TITLE: LAB IV course, the learners should be able to s of the experiments se electronic and non-electronic circuits
CO4 CO5 COURS On succe CO1 CO2 CO3	discuss the one dime analyze the energy walls, square potenti E CODE: GLPH6L ssful completion of the explain the principle construct and analyse determine the physic	Major Course COURSE TITLE: LAB IV course, the learners should be able to s of the experiments se electronic and non-electronic circuits cal parameters through various experimental techniques
CO4 CO5 COURS On succe CO1 CO2 CO3 CO4	discuss the one dime analyze the energy walls, square potenti E CODE: GLPH6L ssful completion of the explain the principle construct and analyse determine the physic analyse the data and	Anisonal and unce dimensional energy ergenvalue problems eigenvalue problems such as square potential with rigid, finite al barrier, rigid rotator and hydrogen atom Major Course COURSE TITLE: LAB IV course, the learners should be able to s of the experiments se electronic and non-electronic circuits cal parameters through various experimental techniques interpret appropriate conclusions

Major Course		
COURSE CODE: GLPH6P COURSE TITLE: PROJECT WORK		
On successful completion of the course, the learners should be able to		
CO1	implement the basic principles of physics in exploring new avenues	
CO2	design and conduct scientific studies for specific purposes	
CO3	use scientific reasoning to gather, evaluate and interpret data	
CO4	communicate the result of the study in oral and written form	
CO5	solve physics probler sophisticated mathem	ns using qualitative and quantitative reasoning including natical techniques

COURSE CODE:	GLPH6E1
--------------	---------

COURSE TITLE: THERMODYNAMICS

On successful completion of the course, the learners should be able to

CO1	define the properties of thermodynamic systems and the laws governing them
CO2	explain the energy equation, entropy changes, thermodynamic potentials and properties of substances
CO3	use the laws of thermodynamics to determine heat flow, change in entropy and properties of substances
CO4	analyse the properties of gases, phase transitions in closed and open systems
CO5	apply T-dS equations and thermodynamic relations to study the properties of specific systems

	ELECTIVE	E COURSE
COURSE	CODE: GLPH6E2	COURSE TITLE: BIO PHYSICS
On success	sful completion of the course, the learn	ners should be able to
CO1	recall the separation techniques, print microscopy	ciples of spectroscopy, crystallography and
CO2	describe the features of spectroscopy techniques	, crystallography, microscopy and separation
CO3	analyse crystal structures, XRD data,	NMR data
CO4	discuss various electron microscopy	
CO5	apply NMR spectroscopy in chemistr	y, biochemistry and biophysics

 \checkmark

		Self-Employment course
COURSE	CODE: GLSE66	COURSE TITLE: DOMESTIC ELECTRICAL APPLIANCES SERVICING
On success	sful completion of the	course, the learners should be able to
CO1	define the basic elect	crical and electronic parameters
CO2	describe the basic ho appliances	usehold wiring, types of earthing, electrical devices and
CO3	compare the types of	transformer and batteries
CO4	list the possible defe	cts in household appliances
CO5	analyse the colour co	oding of resistors and working of domestic electrical appliances

		Self-Employment course
COURSI	E CODE: GLSE66L	COURSE TITLE: DOMESTIC ELECTRICAL APPLIANCES SERVICING-LAB
On succes	ssful completion of the	course, the learners should be able to
CO1	identify the color coo	les of resistors
CO2	solder the electrical of	components
CO3	acquire the entrepren	eurship skill
CO4	carry out the basic he	ousehold wiring
CO5	service the household	d appliances

THE STANDARD FIREWORKS RAJARATNAM COLLEGE FOR WOMEN (AUTONOMOUS), SIVAKASI – 626 123.

(Affiliated to Madurai Kamaraj University, Re-accredited with A Grade by NAAC, College with Potential for Excellence by UGC and Mentor Institution under UGC PARAMARSH)

DEPARTMENT OF PHYSICS

PG DEGREE PROGRAMME IN PHYSICS

PROGRAMME EDUCATIONAL OBJECTIVES

The Graduate	es will
PEO1.	become competent professional in industry, consultancy, education, research and public administration
PEO2.	excel as Junior Research Fellow, research associates and analyze complex problems to reach substantiated conclusions
PEO3.	become tutors, tech or digital entrepreneur and undertake projects
PEO4.	interpret and analyze the experimental data in physics imbibed by ethical, moral and social values leading to highly cultured and civilized physicist

PROGRAMME SPECIFIC OUTCOMES

By the Completion of PG. Physics programme, the learners will be able to

	apply graduate-level acquaintance in solving problems and proving the theories in
PSO1.	various areas of physics like quantum mechanics, solid state physics, molecular
	spectroscopy, mathematical physics and nanophysics
DSOJ	possess scientific attitude, experimental skills, analyze data and interpret the results
PSO2.	obtained in physics related problems
DSO3	implement the physical concepts in a high quality research or creative capstone
F3O3.	project under appropriate disciplinary or multi disciplinary context
DSO4	present the recent trends in physics effectively in seminars, conferences using ICT
r504.	tools
PSO5.	plan and carry out group discussions, respond to the views of team members and
	perform complicated projects successfully
	follow scientific ethics in all stages of scientific practices such as data collection,
PSO6.	transcription, validation of results through replication and publication
DCO7	realize the impact of science on society and engage in lifelong learning and
PSO7.	like material science, electronics, energy devices, eco friendly materials etc.

COURSE OUTCOME

	Core (Course
COURSE	CODE: HLPH11	COURSE TITLE: MATHEMATICAL PHYSICS-I
On success	sful completion of the course, the learn	ers should be able to
CO1	define matrices, vectors, theorems, diffunction, Bessel and Legendre function	fferential equations, Beta function, Gamma
CO2	discuss about vectors, matrices, differ	rential equations and special functions
CO3	solve differential equations using spe	cial functions
CO4	apply the generating function to obtain	in the recurrence relations for special functions
CO5	analyze the orthogonal property and	recurrence relations of special functions

	Core (Course
COURSE	CODE: HLPH12	COURSE TITLE: CLASSICAL AND STATISTICAL MECHANICS
On success	sful completion of the course, the learn	ers should be able to
CO1	define fundamental concepts of both	classical and statistical mechanics
CO2	discuss the equations of Lagran ensembles of statistical mechanics	ngian, Hamiltonian, canonical and different
CO3	solve simple problems in Lagran Poisson's bracket and statistical meet	ngian formulation, canonical transformations, hanics
CO4	analyze various functions in classica	l, statistical and quantum statistical mechanics
CO5	appraise the requisites of classical an	d statistical mechanics

 \checkmark

	Core	Course
COURSE	CODE: HLPH13	COURSE TITLE: LINEAR INTEGRATED CIRCUITS
On succes	sful completion of the course, the learn	ners should be able to
CO1	list the various steps in fabrication of comparator, timer and phase locked l	of semiconductors, basic information of op-amp, oops
CO2	explain the characteristics of op-amp	and operation of 555 timer
CO3	use op-amp for different applications	and construct active and passive components
CO4	analyze waveform generators, detector fabrication technology of ICs.	ors, oscillators, op-amp, filters, multivibrators and
CO5	discuss the working of op-amp, 55 diagrams	5 timer and phase locked loop with necessary

·····

* * ~

	Core (Course
COURSE	CODE: HLPH1L	COURSE TITLE: LAB – I
On success	sful completion of the course, the lear	mers should be able to
CO1	recall the basic principles required for	or carrying out experiments
CO2	construct electronic and non-electron	nic circuits
CO3	perform experiment and collect data	
CO4	analyze the data both manually and	graphically
CO5	do the experiments by following the	laboratory ethics

	ELEC	CTIVE COURSE
COURS	E CODE: HLPH1E1	COURSE TITLE: MICROPROCESSOR
On succe	essful completion of the course, th	e learners should be able to
CO1	analyse the architecture and in	nstruction set of the microprocessor Intel 8085
CO2	explain programming techniqu	es with additional instructions
CO3	describe the counters and time	delay
CO4	perform data and code conversion	ions
CO5	interface data converters	
COURS	Core E CODE: HLPH1E2	Elective Course
COURS	Core E CODE: HLPH1E2	Elective Course COURSE TITLE: DIGITAL LOGIC DESIGN
COURS On succe	Core E CODE: HLPH1E2	Elective Course COURSE TITLE: DIGITAL LOGIC DESIGN The learners should be able to
COURS On succe CO1	Core E CODE: HLPH1E2 essful completion of the course, th simplify the Boolean functions	Elective Course COURSE TITLE: DIGITAL LOGIC DESIGN The learners should be able to and to construct circuits
COURS On succe CO1 CO2	Core E CODE: HLPH1E2 essful completion of the course, th simplify the Boolean functions explain the working of digital o	Elective Course COURSE TITLE: DIGITAL LOGIC DESIGN elearners should be able to and to construct circuits circuits (combinational and sequential) with diagram
COURS: On succe CO1 CO2 CO3	Core E CODE: HLPH1E2 Essful completion of the course, th simplify the Boolean functions explain the working of digital of design combinational and seque	Elective Course COURSE TITLE: DIGITAL LOGIC DESIGN a le learners should be able to a and to construct circuits circuits (combinational and sequential) with diagram tential circuits using gates and flip flops
COURS On succe CO1 CO2 CO3 CO4	Core E CODE: HLPH1E2 Essful completion of the course, th simplify the Boolean functions explain the working of digital of design combinational and sequ analyze combinational and sequ	Elective Course COURSE TITLE: DIGITAL LOGIC DESIGN ae learners should be able to a and to construct circuits circuits (combinational and sequential) with diagram ential circuits using gates and flip flops quential circuits using gates and flip flops

	Core Elect	ive Course
COURSE	CODE: HLPH1E2	COURSE TITLE: DIGITAL LOGIC DESIGN
On success	sful completion of the course, the learn	ners should be able to
CO1	simplify the Boolean functions and to	o construct circuits
CO2	explain the working of digital circuit	s (combinational and sequential) with diagram
CO3	design combinational and sequential	circuits using gates and flip flops
CO4	analyze combinational and sequentia	l circuits using gates and flip flops
CO5	apply the design procedure to sol	ve problems

	Core Cor	ırse
COURS	E CODE: HLPH21	COURSE TITLE: QUANTUM MECHANICS - I
On succe	ssful completion of the course, the learn	ners should be able to
CO1	state the properties of Schrodinger mechanics	formulation and matrix formulation of quantum
CO2	explain Schrodinger wave equation momentum, Hermite polynomial, La	, eigen functions, eigen values of energy and guerre polynomials and equations of motion
CO3	apply Schrodinger wave equation to problems and matrix theory to linear	exactly solvable systems of bound state, collision harmonic oscillator problem
CO4	interpret the significance of Ehre operators and delta function	nfest theorem, eigen values, eigen functions,
CO5	analyse discrete energy levels and wa vectors, commutator brackets and en quantum theory	ve functions of bound state, Hilbert space of state quations of motion using matrix formulation of
	Core	Course
COURSI	Core (E CODE: HLPH22	Course COURSE TITLE: MATHEMATICAL PHYSICS-II
COURSI On succe	Core Core C	Course COURSE TITLE: MATHEMATICAL PHYSICS-II ners should be able to
COURSI On succe CO1	Core Core C	Course COURSE TITLE: MATHEMATICAL PHYSICS-II hers should be able to aplace transforms, complex variables, Dirac pes of groups
COURSI On succe CO1 CO2	Core (E CODE: HLPH22 ssful completion of the course, the learr define tensors, Fourier transforms, La Delta function, green function and ty explain the types of tensor, propert function, reducible and irreducible re	Course COURSE TITLE: MATHEMATICAL PHYSICS-II hers should be able to aplace transforms, complex variables, Dirac pes of groups ies of Fourier, Laplace transforms, Dirac delta opresentations
COURSI On succe CO1 CO2 CO3	Core C E CODE: HLPH22 ssful completion of the course, the learn define tensors, Fourier transforms, La Delta function, green function and ty explain the types of tensor, propert function, reducible and irreducible re explain the types of tensor, propert function, reducible and irreducible re	Course COURSE TITLE: MATHEMATICAL PHYSICS-II hers should be able to aplace transforms, complex variables, Dirac pes of groups ies of Fourier, Laplace transforms, Dirac delta presentations ies of Fourier, Laplace transforms, Dirac delta presentations
COURSI On succe CO1 CO2 CO3 CO4	Core (E CODE: HLPH22 ssful completion of the course, the learn define tensors, Fourier transforms, La Delta function, green function and ty explain the types of tensor, propert function, reducible and irreducible re explain the types of tensor, propert function, reducible and irreducible re construct the analytic functions of point group	Course COURSE TITLE: MATHEMATICAL PHYSICS-II ners should be able to aplace transforms, complex variables, Dirac pes of groups ies of Fourier, Laplace transforms, Dirac delta presentations ies of Fourier, Laplace transforms, Dirac delta presentations Complex variable and the character table for
COURSI On succe CO1 CO2 CO3 CO4 CO5	Core (E CODE: HLPH22 ssful completion of the course, the learn define tensors, Fourier transforms, La Delta function, green function and ty explain the types of tensor, propert function, reducible and irreducible re explain the types of tensor, propert function, reducible and irreducible re construct the analytic functions of point group analyze Fourier transform, Laplace to functions and character table for point	Course COURSE TITLE: MATHEMATICAL PHYSICS-II ners should be able to aplace transforms, complex variables, Dirac pes of groups ies of Fourier, Laplace transforms, Dirac delta presentations ies of Fourier, Laplace transforms, Dirac delta presentations ies of Fourier, Laplace transforms, Dirac delta presentations i complex variable and the character table for transform, complex variables, Dirac delta, green at group

Core Course		
COURSE CODE: HLPH22 COURSE TITLE: MATHEMATICAL PHYSICS-II		
On success	ful completion of the course, the learn	ers should be able to
CO1	define tensors, Fourier transforms, Laplace transforms, complex variables, Dirac Delta function, green function and types of groups	
CO2	explain the types of tensor, properties of Fourier, Laplace transforms, Dirac delta function, reducible and irreducible representations	
CO3	explain the types of tensor, properties of Fourier, Laplace transforms, Dirac delta function, reducible and irreducible representations	
CO4	construct the analytic functions of complex variable and the character table for point group	
CO5	analyze Fourier transform, Laplace transform, complex variables, Dirac delta, green functions and character table for point group	

Core Course		
COURSE CODE: HLPH23 COURSE TITLE: ELECTROMAGNETIC THEORY		
On successful completion of the course, the learners should be able to		
CO1	recall the basic concepts and different laws of electrostatic fields, magnetic fields, propagation of waves and Maxwell's equations	
CO2	describe static electric and magnetic fields, their behavior in different media, associated laws, boundary conditions and electromagnetic potentials.	
CO3	apply different techniques of vector calculus to solve problems related to electromagnetic field	
CO4	analyze the propagation of electromagnetic waves in different media and their interfaces	
CO5	apply Maxwell's equations for e transmission lines and media	lectromagnetic wave propagation in different

·····

* * ~

Core Course		
COURSE CODE: HLPH2L COURSE TITLE: LAB – II		
On successful completion of the course, the learners should be able to		
CO1	state the principles of the experiments	
CO2	perform electronic and non-electronic experiments	
CO3	calculate the physical parameters	
CO4	analyse the data and draw conclusions manually and graphically	
CO5	do experiments with laboratory ethics	

Elective Course		
COURSE CODE: HLPH2E1 COURSE TITLE: APPLIED PHYSICS		
On successful completion of the course, the learners should be able to		
CO1	list various optical and medical instruments, various types of communication	
CO2	describe the working of optical and medical instruments, fibre optics and various communication systems	
CO3	solve problems related to fibre optics and communication system	
CO4	compare various telescopes, scanning methods, classification of holograms, types of optical fibre and power budget calculation	
CO5	appraise the application of optical relevant field	phenomenon and medical instrument in their

Core Elective Course		
COURSE CODE: HLPH2E2 COURSE TITLE: -MICROCONTROLLER		
On successful completion of the course, the learners should be able to		
CO1	explain the architecture and instruction set of the microcontroller Intel 8051	
CO2	write the assembly language programming for the microcontroller Intel 8051	
CO3	list the features of 8051	
CO4	identify interrupts sources and interrupt vector addresses	
CO5	disseminate different programmable of	levices and methods to interface them

Core Course		
COURSE CODE: HLPH31 COURSE TITLE: SOLID STATE PHYSICS - I		
On successful completion of the course, the learners should be able to		
CO1	recall elastic / thermal properties, parameters of different crystals / materials	
CO2	discuss parameters of different crystals/elastic waves, heat capacity, electrical and thermal properties of different materials/models	
CO3	interpret parameters of different types of crystals/elastic waves and models	
CO4	examine elastic waves, thermal/electrical parameters of different crystals/ models/materials and carrier concentrations	
CO5	derive parameters of inert gas/ior different models	ic/semiconductor crystals, elastic waves and

Core Course		
COURSE CODE: HLPH32	COURSE TITLE: QUANTUM MECHANICS - II	
On successful completion of the course, the learners should be able to		
state and include the second state the destate time destate state and state the second state state and state state and state state state and state state and state stat		

CO1	state various approximation methods for bound state, time dependent perturbation problems and scattering problems
CO2	describe various approximation methods of perturbation problems and scattering problems, emission and absorption of radiation, angular momentum and relativistic theories
CO3	apply the appropriate approximation methods to find solutions of variety of eigen value problems of stationary and time dependent perturbation problems and scattering problems
CO4	interpret eigen values of angular momentum, Schrodinger and Dirac relativistic equations
CO5	analyse the asymptotic behavior of wave function in various collision problems,dirac matrices and spin orbit interaction

Core Course		
COURSE CODE: : HLPH33 COURSE TITLE: Computer Oriented Numerical Methods		
On successful completion of the course, the learners should be able to		
CO1	list the features of C++, numerical methods of solving various types of equations, 8085 MPU architecture, 8085 MPU features, memory, I/O devices	
CO2	explain the features of C++ with syntax and examples, numerical methods, solution for different type of equations, 8085 MPU architecture/features, memory, I/Odevices	
CO3	apply appropriate numerical techniques to solve different types of equations	
CO4	solve problems using algorithms/C++/8085 microprocessor	
CO5	analyse C++, numerical methods and	1 8085 features

┶┶┶┶┶┶┶┶┶┶┶**┶┶**┶┶┶┶┶┶

 \checkmark

Core Course			
COURSE	COURSE CODE: HLPH3L COURSE TITLE: LAB – III		
On successful completion of the course, the learners should be able to			
CO1	write programs for numerical methods, microprocessor and draw circuit diagrams for data processing circuits		
CO2	implement the programs and construct the circuits		
CO3	record observation in a systematic way		
CO4	analyze the collected data and report the results		
CO5	interpret the results following labora	tory ethics	

Core Elective Course		
COURSE CODE: HLPH3E1 COURSE TITLE: CSIR UGC-NET Preparatory course - Physics		
On successful completion of the course, the learners should be able to		
CO1	solve problems using mathematical concepts	
CO2	apply classical, quantum and thermodynamical concepts to solve problems	
CO3	solve problems on electromagnetic waves	
CO4	apply various concepts of atomic, nuclear and molecular physics to solve problems	
CO5	apply different laws to solve problems in electronics	

Core Elective Course		
COURSE CODE: HLPH3E2 COURSE TITLE: RECENT TRENDS IN PHYSICS		
On successful completion of the course, the learners should be able to		
CO1	list the basic concepts of simulation and applications of nanotechnology	
CO2	describe various nano lithographic techniques, modeling, smart materials and self healing structures	
CO3	classify system simulation and discrete system simulation, sensors	
CO4	analyze the applications of nanotechnology in optics and electronics	
CO5	solve problems using simulation	

Core Course		
COURSE CODE: HLPH41 COURSE TITLE: SOLID STATE PHYSICS - II		
On successful completion of the course, the learners should be able to		
CO1 recall different parameters of different materials and different particles.		
CO2	explain properties/parameters of metals, magnetic materials, different particles.	
CO3	³ determine Fermi surfaces and metals, super conductivity and different magnetic materials and different particles.	
CO4	analyze parameters of metals, super conductivity, magnetic materials, plasmons, polaritons and polarons	
CO5	CO5 describe orbits, energy bands of metals, survey of superconductor, parameters of magnetic materials/different particles	
Core Course		

COURSE	CODE: HLPH42	COURSE TITLE: NUCLEAR PHYSICS
On successful completion of the course, the learners should be able to		
CO1	list the properties of nuclear forces, n and elementary particles	uclear models, nuclear reactions, fission, fusion
CO2	explain the different scatterings, nuc fission, classification of elementary p	lear models, types of nuclear reactions, types of particles and quarks
CO3	outline the existence of non-central for partial wave analysis of reaction or thermonuclear reactions	brces, predictions of the shell model, classical and coss-sections, compound nucleus, controlled
CO4	analyze Breit-Wigner Dispersion for fission, conservation laws of nuclear	nula, Bohr and Wheeler's theory of nuclear reactions and elementary particles
CO5	apply the conservation laws of eleme	ntary particles to solve simple problems

Core Course			
COURSE CODE: HLPH43 COURSE TITLE: MOLECULAR SPECTROSCOPY			
On successful completion of the course, the learners should be able to			
CO1	state the nature of interaction of various radiations on different types of molecules		
CO2	obtain the energy expressions for interacting molecules using microwave, infrared, Raman, electronic and spin resonance spectroscopic method		
CO3	CO3 estimate the interatomic distances of rotors, vibrating molecules and vibrating rotors		
CO4	analyse the structure and intensity of rotational, vibrational, electronic spectra and spin resonance spectra of molecules		
CO5	explain the experimental techniques involved in microwave, infrared, Raman and spin resonance spectroscopic methods		

** *

Core Course		
COURSE CODE: HLPH4P	COURSE TITLE: PROJECT AND VIVA VOCE	
On successful completion of the course, the learners should be able to		

CO1	identify and analyze the nature of the problems
CO2	interpret relevant data, manipulate them and find solution
CO3	develop the writing skills of project report in an ethical manner
CO4	present their findings in conferences
CO5	defend their dissertations in viva-voce

	Core Elective Course		
COURSE CODE: HLPH4E1 COURSE TITLE: NANO PHYSICS			
On succes	sful completion of the course, th	ne learners should be able to	
CO1	label the basics of microscopic techniques, features of individual nanoparticles, CNT and nanosensors		
CO2	explain the working of different microscopies, synthesis, structure and properties of nanoparticles, CNT and nanosensors		
CO3	discuss the microscopic techniques and applications of nanoclusters, metal and semiconductor nanoparticles, carbon nanotubes and nanosensor devices		
CO4	apply the techniques of microscopes in characterization of metal/semiconducting nanoparticles, CNT and nanoscale organization of nanosensors		
CO5	inspect electron/scanning probe microscopies, individual nanoparticle/ CNT and nano sensing devices		
	F	Jective Course	
	E	Clective Course	
COURSE	E CODE: HLPH4E2	Clective Course COURSE TITLE: MEDICAL PHYSICS	
C OURSE On succes	E CODE: HLPH4E2	Clective Course COURSE TITLE: MEDICAL PHYSICS The learners should be able to	
C OURSE On succes CO1	E CODE: HLPH4E2	Clective Course COURSE TITLE: MEDICAL PHYSICS The learners should be able to Fects of ultrasound in therapy	
COURSE On succes CO1 CO2	E CODE: HLPH4E2 esful completion of the course, the describe the physiological effective apply the theory of light in me	Course COURSE TITLE: MEDICAL PHYSICS The learners should be able to Cects of ultrasound in therapy Edical applications	
COURSE On succes CO1 CO2 CO3	E CODE: HLPH4E2 Soful completion of the course, the describe the physiological effective apply the theory of light in mean create an insight on various as	Course COURSE TITLE: MEDICAL PHYSICS ne learners should be able to rects of ultrasound in therapy edical applications pects of radiology	
COURSE On succes CO1 CO2 CO3 CO4	E CODE: HLPH4E2 Soful completion of the course, the describe the physiological effect apply the theory of light in me create an insight on various as apply the physical principles of	Course COURSE TITLE: MEDICAL PHYSICS ne learners should be able to rects of ultrasound in therapy edical applications pects of radiology of the instruments used in medical diagnosis & therapy	
COURSE On succes CO1 CO2 CO3 CO4 CO5	E CODE: HLPH4E2 Soful completion of the course, the describe the physiological effect apply the theory of light in me create an insight on various as apply the physical principles of explain the physics behind race	Clective Course COURSE TITLE: MEDICAL PHYSICS The learners should be able to Tects of ultrasound in therapy Edical applications pects of radiology of the instruments used in medical diagnosis & therapy diation therapy	

Elective Course			
COURSE CODE: HLPH4E2 COURSE TITLE: MEDICAL PHYSICS			
On successful completion of the course, the learners should be able to			
CO1	describe the physiological effects of ultrasound in therapy		
CO2	apply the theory of light in medical applications		
CO3	create an insight on various aspects of radiology		
CO4	apply the physical principles of the instruments used in medical diagnosis & therapy		
CO5	explain the physics behind radiation therapy		

CERTIFICATE PROGRAMME IN DIGITAL PHOTOGRAPHY AND PHOTOSHOP

PROGRAMME EDUCATIONAL OBJECTIVES

By the Completion of the certificate programme in Digital Photography and Photoshop, the learners will be able to

PEO1	be effective photographer with mastery of the materials including the uses of camera, film, light and digital technique
PEO2	be self employed/freelance commercial photographers and photo composer

PROGRAMME SPECIFIC OUTCOMES

By the Completion of the certificate programme in Digital Photography and Photoshop, the learners will be able to

PSO1	handle software to design digital photos creatively
PSO2	develop images by intermingling arts and science in an unique way
PSO3	use digital photo technique instead of mechanical tools to have eco-friendly

Certificate course		
COURSE CODE: ACDP11	COURSE TITLE: DIGITAL PHOTOGRAPHY AND PHOTOSHOP	

On successful completion of the course, the learners should be able to

CO1	define parts of camera, digital camera, pixels, storage card, photoshop program window, digital zoom and optical zoom, image edit tools and various file formats.
CO2	explain types of camera, camera parts, lens types, digital camera, metering, sensors, storage card, photoshop program window, tool box and file format
CO3	apply different file formats to create images
CO4	create images with different tools, use screen modes in photoshop program window
CO5	develop photos of required size using different tools, file formats, matrix, metering, sensors, pixels, rotating, cropping and editing images

Certificate course

COURSE CODE: ACDP1L		COURSE TITLE: PHOTOGRAPHY AND PHOTOSHOP TECHNIQUES-LAB
On successful completion of the course, the learners should be able to		
CO1	recall menu and menu options in Photoshop	
CO2	explain the various image editing tools.	
CO3	apply various effects and adjustment options for an image	
CO4	perform experiments to produce pleasant required image	
CO5	able to create greeting card, work with Photoshop.	

ADD ON COURSE-1

COURSE	CODE: GLPHEC1	COURSE TITLE: NANOTECHNOLOGY
On successful completion of the course, the learners should be able to		
CO1	define the basics of nanomaterials and characterization techniques	
CO2	discuss the synthesis, charac nanotubes/nanomaterials	eterization and applications of carbon
CO3	describe the properties of carbon nanotubes and nanomaterials	
CO4	analyze the significance of various microscopic and diffraction techniques	
CO5	compare the different synthesis route	es of nanomaterials

ADD ON COURSE- 2

COURSE CODE: GLPHEC2

COURSE TITLE: Physics for Competitive Examinations On successful completion of the course, the learners should be able to

CO1	define the basic laws of motion, gravitation, thermal, optics and electronics
CO2	describe the concepts of work, waves, atomic and nuclear physics
CO3	classify the different electronic devices and communication systems
CO4	solve problems in Physics
CO5	appraise the importance of recent trends in Physics